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Abstract 

Background:  With the introduction of DNA-damaging therapies into standard of care cancer treatment, there is a 
growing need for predictive diagnostics assessing homologous recombination deficiency (HRD) status across tumor 
types. Following the strong clinical evidence for the utility of DNA-sequencing-based HRD testing in ovarian cancer, 
and growing evidence in breast cancer, we present analytical validation of the Tempus HRD-DNA test. We further 
developed, validated, and explored the Tempus HRD-RNA model, which uses gene expression data from 16,750 RNA-
seq samples to predict HRD status from formalin-fixed paraffin-embedded tumor samples across numerous cancer 
types.

Methods:  Genomic and transcriptomic profiling was performed using next-generation sequencing from Tempus 
xT, Tempus xO, Tempus xE, Tempus RS, and Tempus RS.v2 assays on 48,843 samples. Samples were labeled based on 
their BRCA1, BRCA2 and selected Homologous Recombination Repair pathway gene (CDK12, PALB2, RAD51B, RAD51C, 
RAD51D) mutational status to train and validate HRD-DNA, a genome-wide loss-of-heterozygosity biomarker, and 
HRD-RNA, a logistic regression model trained on gene expression.

Results:  In a sample of 2058 breast and 1216 ovarian tumors, BRCA status was predicted by HRD-DNA with F1-scores 
of 0.98 and 0.96, respectively. Across an independent set of 1363 samples across solid tumor types, the HRD-RNA 
model was predictive of BRCA status in prostate, pancreatic, and non-small cell lung cancer, with F1-scores of 0.88, 
0.69, and 0.62, respectively.

Conclusions:  We predict HRD-positive patients across many cancer types and believe both HRD models may gener-
alize to other mechanisms of HRD outside of BRCA loss. HRD-RNA complements DNA-based HRD detection methods, 
especially for indications with low prevalence of BRCA alterations.
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Background
Genomic instability is an enabling characteristic of can-
cer that is often mediated by deficiency in DNA dam-
age sensing and repair processes [1]. The homologous 
recombination repair (HRR) pathway, which is respon-
sible for repairing DNA double-strand breaks (DSBs) 
[2], is frequently dysregulated in cancer, leading to the 
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accumulation of genomic defects and cancer progres-
sion [3]. BRCA1 and BRCA2 are foundational to the HRR 
pathway and were initially discovered due to their asso-
ciation with hereditary breast and ovarian cancers. Since 
their discovery, screening for germline BRCA alterations 
has become a powerful tool for clinical risk assessment 
and management [4]. In addition, understanding the role 
of BRCA1 and BRCA2 in HRR has led to the develop-
ment of targeted therapies, such as poly-ADP ribose pol-
ymerase (PARP) inhibitors. This class of drugs exploits 
synthetic lethality with the base excision repair pathway 
to directly target the underlying mechanism contributing 
to tumorigenesis [5, 6].

Genetically or epigenetically driven loss of function in 
BRCA1 or BRCA2 is the canonical driver of the homolo-
gous recombination deficiency (HRD) phenotype, which 
is defined as the inability to repair DSBs with HRR [7]. 
Nevertheless, multiple genes may impact the ability of 
the HRR pathway to repair DSBs. Specifically, BRCA1/2 
alterations are not necessary to cause the HRD phe-
notype; alterations in other HRR-related genes (i.e., 
RAD51C and PALB2) have also been associated with the 
HRD phenotype [8]. However, the set of necessary and 
sufficient genetic and epigenetic alterations that drive the 
clinical manifestation of the HRD phenotype—and thus 
potential sensitivity to DNA damaging therapies (PARP 
inhibitors) in specific cancer indications—has yet to be 
comprehensively determined.

Additional biomarkers, outside of mutations in 
BRCA1/2, are needed to better characterize the HRD 
phenotype and to identify patients without BRCA1/2 
mutations who are most likely to benefit from DNA 
repair-targeting therapies. One such biomarker is the 
presence of a genomic scar which is created when 
HR-deficient cells are unable to repair DNA damage. 
Genome-wide loss-of-heterozygosity (gwLOH) meas-
ures genomic scarring by calculating the percent of the 
profiled genome with loss of at least one allele. gwLOH 
has demonstrated clinical benefit in detecting HRD in 
ovarian cancers when used either independently [9] or 
in combination with measures of telomeric allelic imbal-
ance (TAI) and large-scale state transitions (LST) [10]. 
Many of these DNA-based HRD biomarkers are calcu-
lated excluding regions with aneuploidy, defined by loss 
or gains of chromosomes or chromosome arms, which is 
considered to be a confounding variable that may inflate 
gwLOH [9, 11–13].

Additional DNA-based approaches for identifying 
the HRD phenotype include the assessment of muta-
tional signatures using base-substitutions, indels, or 
rearrangements [8, 14]. Using whole-genome sequenc-
ing data, mutational signatures have suggested 20–30% 
more breast cancer patients may harbor HRD than what 

is detectable using the BRCA1/2 genotype alone [14–
16]. While DNA-based HRD biomarkers have demon-
strated some preliminary evidence in predicting PARP 
inhibitor response outside of breast and ovarian cancer 
[17–19], these methods have only demonstrated clini-
cal utility in ovarian cancer [20, 21]—with significant 
ongoing research for breast cancer [16, 22–24]—neces-
sitating new approaches for other cancer types. Alterna-
tive approaches to detect HRD include measurement of 
epigenetic silencing of BRCA1/2 [25–27] and/or epige-
netic or genetic loss of other gene members of the HRR 
pathway [5, 28, 29]. However, these mechanisms may be 
tissue-specific, requiring additional research between 
specific alterations and the HRD phenotype. Further, reli-
ance on fresh tissue for whole-genome sequencing and 
the measurement of multiple molecular modalities can 
be impractical and costly in real-world clinical practice.

Functional biomarkers of HRD, such as those assessing 
RAD51 nuclear localization [30], have received increas-
ing attention given the accumulating evidence for the 
development of resistance to platinum chemotherapy 
[31] and PARP inhibitors [32], suggesting that HRD is a 
dynamic phenotype. DNA-based biomarkers of the HRD 
phenotype have a strong temporal dependency given that 
a sufficient accumulation of genomic scars is needed for 
detection. Additionally, genomic markers of instabil-
ity may have limited reversibility and could represent 
the molecular history of the tumor rather than the cur-
rent state of HRR proficiency. In contrast to DNA-based 
approaches, gene expression has the potential to capture 
the dynamic state of HRD in a manner that is independ-
ent from genomic scarring, particularly in cancer types 
outside breast and ovarian cancer, where DNA-based 
approaches have not yet reached the clinic. Transcrip-
tional signatures have shown promise in predicting 
BRCA status or genomic scars in prostate and pancreatic 
cancer [33–35]. However, it has yet to be demonstrated 
that a transcriptome-based model can generalize across 
solid tumors.

Here, we present an analytical validation of the Tem-
pus HRD platform comprising two assays: HRD-DNA, 
which measures gwLOH to predict HRD status in breast 
and ovarian cancers, and HRD-RNA, a logistic regression 
model trained on whole-exome capture RNA sequenc-
ing data that predicts HRD status across all other solid 
tumors. Both assays were trained to identify biallelic loss 
of BRCA1/2, defining the HRD-positive class using the 
canonical definition of HRD rather than using a genomic-
scar approach. Using data from a large-scale, real-world 
cohort, we demonstrate the capabilities of these models 
to accurately detect HRD driven by BRCA1/2 loss and 
non-BRCA1/2 mechanisms.
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Methods
Sample selection
Prior to sequencing, a hematoxylin and eosin (H&E) 
stained slide was prepared for formalin-fixed paraffin-
embedded (FFPE) tumor specimens and reviewed by a 
board-certified pathologist to ensure that adequate tis-
sue, tumor content, and sufficient nucleated cells were 
present to satisfy the minimum tumor content require-
ment. A minimum tumor content of 20% was required 
to result in adequate yield at extraction and to proceed 
with sequencing. Macrodissection was carried out when 
deemed feasible by a pathologist to increase the tumor 
content of a specimen. Macrodissection was required if 
the tumor percentage was less than 40%, and was per-
formed to increase tumor content in some instances.

Sample metadata, specifically tumor purity and cancer 
cohort labels, was determined by board-certified pathol-
ogists. Sample status (i.e., primary, metastatic, lymph 
node) was determined using a rule set based on heuris-
tics between ICD-10 diagnosis codes and ICD-09 codes 
for anatomical biopsy site locations. Tissue sites provided 
by external pathology reports were mapped to ICD-09 
codes. Samples that were unambiguously primary sam-
ples (e.g., ovarian cancer biopsied from the ovary) were 
labeled as “Primary”. Samples that were unambiguously 
metastatic samples (e.g., ovarian cancer biopsied from 
the liver) were labeled as “Metastatic”. Samples biopsied 
from a regional lymph node were labeled “Intermediate 
- Lymph Involvement”. Samples with incomplete biopsy 
site location information provided on an external pathol-
ogy report were labeled “Intermediate - Missing Data”.

For orthogonal concordance testing between HRD-
DNA and 1p FISH results, samples were ensured to be 
gliomas biopsied from the brain, with at least 40% tumor 
purity, and curated with positive or negative FISH results 
performed on chromosome 1p within 6 months of collec-
tion of the biopsy used for xT sequencing.

DNA and RNA sequencing
A representative sample of de-identified records from 
48,843 FFPE tumor samples across 42 solid tumor can-
cer types with DNA and/or RNA sequencing data were 
selected from the Tempus Oncology Database. All under-
went DNA sequencing based on the Tempus xT targeted 
panel (n  = 48,827), Tempus xO (n  = 9), or Tempus xE 
whole-exome panel (n  = 17). When available, a blood 
sample was used for identifying germline alterations and 
LOH. For this cohort, 31,019 samples had a matched nor-
mal sample available. Of the 48,843 samples with DNA 
sequencing, 47,997 had RNA sequencing available.

Sample preparation, DNA sequencing, and RNA 
sequencing for each assay were conducted as previously 
described [36–40]. For DNA-seq, 50–300 nanograms 

(ng) of DNA for each tumor sample are sheared to an 
average size of 200 base pairs (bp), hybridized to the xT 
probe set, captured using Streptavidin-coated beads and 
amplified. Amplified target-captured DNA tumor librar-
ies are sequenced to a target depth of 500x on Illumina 
NovaSeq 6000 before being mapped to Ensembl GRCh37 
(Release 75) using Novoalign (Novocraft, Inc.). The xT 
assay reports on single nucleotide variants, insertions/
deletions, and copy number variants across 595–648 
genes, which cover 3.6 Mb of genomic space.

The Tempus xT RNA-seq protocol uses exome-cap-
ture via IDT xGen probes (> 415,000) spanning > 19,000 
genes, with at least 50 ng of extracted RNA required 
before proceeding to library preparation and a mini-
mum depth of 30 million reads (also sequenced on a 
NovaSeq 6000). Transcript level abundances are derived 
from Kallisto (v.0.44.0) [41, 42] pseudoalignments to the 
Ensembl GRCh37 (Release 75) and normalized for tran-
script length, GC content, and library size; batch correc-
tion is performed for samples sequenced with different 
probe designs [43]. Gene-level abundances are obtained 
by summing only transcripts labeled as protein coding by 
Ensembl. All samples included in these analyses passed 
QC metrics, including minimum read depth, mapping 
rate, and duplication rate.

Of the total samples that were assessed, 2058 breast 
cancer and 1216 ovarian cancer FFPE tumor samples 
with at least 20% tumor purity underwent tumor-nor-
mal matched DNA sequencing with the latest xT ver-
sion. These breast and ovarian samples were used for 
training, evaluation, and exploratory analyses for HRD-
DNA, and were all run on the latest assay version to 
ensure consistent probe design and bioinformatics pipe-
lines. Genomic data from the xT assay was analyzed for 
variants, fusions, rearrangements, copy number, and 
loss-of-heterozygosity.

HRD label annotation
Before developing the HRD-DNA and HRD-RNA 
models, samples were labeled as BRCA​-biallelic, HRR-
wild-type (WT), or HRD-ambiguous based on their 
mutational status for both BRCA1/2 and a subset of 
HRR-related genes. Samples with biallelic loss of BRCA1 
or BRCA2 were labeled as BRCA-biallelic. Biallelic loss 
was defined as either (a) homozygous deletion, (b) a path-
ogenic germline or pathogenic somatic mutation with 
overlapping LOH of the other allele, or (c) a co-occuring 
pathogenic germline and pathogenic somatic mutation. 
HRR-WT samples were defined as samples that had no 
detected pathogenic mutations, including variants with a 
low variant allele frequency (VAF), variants of unknown 
significance (VUS), fusions, copy loss, or LOH in BRCA1, 
BRCA2, CDK12, PALB2, RAD51B, RAD51C, or RAD51D.
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Samples that did not meet the criteria for the BRCA-
biallelic or HRR-WT groups were labeled HRD-ambig-
uous, which fell into two major categories: BRCA1/2 
monoallelic loss or HRR mutated with any alteration in 
CDK12, PALB2, RAD51B, RAD51C, or RAD51D. Sam-
ples with mutations in these HRR genes were excluded 
from the HRR-WT group based on their reported asso-
ciations with HRD status and enrichment for HRD+ calls 
in initial model iterations [44–50]. Samples from patients 
treated with PARP inhibitors at any point in their clinical 
history were also considered HRD-ambiguous, regardless 
of mutation status, due to the potential for resistance to 

develop in response to treatment as well as to allow for 
future model validation with clinical data. Additionally, 
samples with BRCA reversion mutations (identified by 
clinical scientists) were also considered HRD-ambigu-
ous. These HRD-ambiguous samples were excluded from 
model training, development, and evaluation, but were 
used for exploratory analyses. Overall, ~ 75% of eligible 
samples were considered HRD-ambiguous (Fig.  1, Sup-
plemental Fig. 1) and therefore excluded from the model 
training and evaluation sets to ensure the development of 
a robust model; these samples were, however, included in 
downstream analyses of model predictions.

Fig. 1  Sample composition for model training, development, evaluation, and exploratory sets by HRR mutation status and cancer type. A 
HRD-DNA. B HRD-RNA. To train, develop and evaluate the HRD-DNA and HRD-RNA models, BRCA1/2 biallelic loss and HRR-WT samples were 
randomized into the training, development and evaluation sets, while samples with BRCA1/2 monoallelic loss or HRR alterations (monoallelic 
or biallelic) in a select number of genes, were assigned to the exploratory set. Samples in the evaluation set were used to test final model 
performance. Samples in the exploratory set were used to determine overall rates of samples called HRD+ and enrichment of HRR mutations in 
HRD+ calls. Development sets were only utilized in the HRD-RNA test. Percentages were calculated as a function of the total samples in each cancer 
cohort for each test
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DNA variant, copy number, loss‑of‑heterozygosity, 
and fusion annotations
DNA variants, copy number, loss-of-heterozygosity, and 
fusions were annotated using a combination of bioin-
formatics pipelines and manual clinical scientist filter-
ing, as described in Beaubier et al. [36]. A minimum 5% 
VAF was used for calling variants. All BRCA reversion 
mutations were identified by clinical scientists. Samples 
that had variants with < 5% VAF (~ 90 samples) in select 
homologous recombination genes of interest (BRCA1/2 
or CDK12/PALB2/RAD51B/C/D) were considered to 
be HRD-ambiguous. Preliminary analyses found that 
a number of samples harboring a low VAF pathogenic 
BRCA1/2 variant (which would by the 5% VAF cutoff not 
be called a variant) were predicted as HRD+ while ini-
tially being included in the HRR-WT class. To determine 
homozygous deletions, samples required either (a) evi-
dence of four consecutive probe regions or (b) 20% of the 
probed length of the gene to have evidence of deletion. A 
germline or somatic variant with LOH was considered as 
a biallelic loss when LOH was detected in the same probe 
region as the detected variant. For fusion events to pass 
quality control, the fusion was required to present at least 
five reads of evidence within the DNA-seq data.

Calculation of gwLOH
The gwLOH calculation required calculation of aneuploid 
regions followed by the calculation of the total fraction 
of bases within probe regions with observed LOH. Per-
cent probe loss was calculated as the number of probes 
with evidence of LOH on a chromosome arm divided 
by the total number of probes for the chromosome arm. 
After excluding probe regions on chromosome arms with 
≥80% probe loss and probe regions on sex chromosomes, 
gwLOH was calculated as the total number of sequenced 
bases in probe regions with LOH divided by total num-
ber of bases covered by all probe regions within the assay. 
Regions with homozygous deletions were considered to 
have LOH.

HRD‑RNA model preprocessing and training
47,997 samples were eligible for HRD-RNA model devel-
opment; BRCA-biallelic and HRR-WT samples were 
stratified by cancer type and HRR mutation status and 
then randomly assigned at a 12:2:1 ratio to the training, 
development, and evaluation sets, respectively (Fig. 1B). 
Normalized gene abundance values for each gene were 
standardized by removing the mean and scaling to unit 
variance. These gene expression values were the input to 
a logistic regression model with L2 regularization and 
weighting of the positive class. The optimal regulariza-
tion strength (where the parameter C is the inverse of 

the regularization strength), positive class weighting (to 
account for the overrepresentation of WT cases in the 
training cohort), and number of genes were determined 
through repeated training and evaluation using the train-
ing and development sets. Each repetition used eleven of 
the twelve training folds to learn the mean and variance 
scaling parameters and train the model. This preprocess-
ing and modeling pipeline was evaluated on the develop-
ment set. Each of the twelve folds in the training data was 
excluded exactly once. After all twelve repetitions, the 
F1-scores were averaged together to create a single score 
for a single set of hyperparameter values, which served as 
the objective function for hyperparameter tuning. 50 sets 
of hyperparameters were evaluated; five were randomly 
seeded to ensure sufficient coverage of the hyperparam-
eter space. During hyperparameter tuning, the next set 
of hyperparameter values to evaluate was selected using 
Bayesian optimization based on the mean F1-scores of 
the preceding hyperparameter evaluations [51]. Tun-
ing the HRD-RNA model revealed the optimal set of 
hyperparameters as an inverse regularization strength of 
0.0009 (strong penalty for large parameters), class weight 
of 11.182 (upweighting of the HRD+ class), and 20,000 
genes (Supplemental Fig.  7). These hyperparameter val-
ues were used to train the final HRD-RNA model on all 
twelve training folds. The HRD-RNA model was imple-
mented in python using the sklearn logistic regression 
function with default parameters except as specified 
above [52].

Transformation into HRD‑RNA scores
The final HRD-RNA score was created by transforming 
the HRD-RNA logistic regression log-odds values using a 
logistic function with a maximum value of 100, a logistic 
growth rate of 1, and a midpoint of 0.72. The midpoint 
was chosen to optimize the F1-score for distinguishing 
BRCA-biallelic and HRR-WT samples on the combined 
training and development sets (Fig. 3A). The final HRD-
RNA scores have values from 0 to 100, with a score of 
less than 50 indicating a prediction of HRD-, and a score 
of greater than or equal to 50 indicating a prediction of 
HRD+.

Statistical analyses
One-way Fisher’s exact tests were used to test for 
enrichment, i.e. enrichment of BRCA-monoallelic sam-
ples with HRD+ calls. To correct multiple hypothesis 
testing, Bonferroni correction was used to calculate 
a false-discovery rate, implemented by the p.adjust() 
function from the stats package in R [53, 54]. All 

HRDRNA Score =
L

1+ e−k(x−x0)
=

100

1+ e−1(x−0.72)
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correlation coefficients and p-values represent Pear-
son correlations implemented by the cor.test() function 
from the stats package [54].

Results
HRD‑labels assigned based on HRR‑gene mutation status
A superset of 48,843 tumor samples with targeted 
DNA-seq and full-transcriptome RNA-seq was used 
in either model training, development, evaluation, or 
exploration for the HRD-DNA or HRD-RNA models 
(Fig.  1). Samples were labeled as either HRD+, HRD-
ambiguous, or HRD-, with HRD+ defined as BRCA-
biallelic, HRD- as no mutations in BRCA1, BRCA2, 
CDK12, PALB2, RAD51C, or RAD51D, and HRD-
ambiguous as BRCA-monoallelic or HRR-mutated 
(Methods). For reference, samples with any mutation 
or LOH in BRCA1, BRCA2, CDK12, PALB2, RAD51B, 
RAD51C, or RAD51D were considered to be HRD-
ambiguous and were not included in the model train-
ing, development, or evaluation sets. HRD+ and 
HRD- labeled samples were randomized into the train-
ing, development, and evaluation sample sets. While 
HRD-ambiguous samples were not used for devel-
opment or analytical validation, they were used for 
downstream analyses to demonstrate the utility of the 
HRD-DNA or HRD-RNA models to identify an HRD 
signal outside BRCA1/2 loss.

Among breast cancer samples, 6.8% were annotated 
as BRCA-biallelic for the HRD-DNA model cohort and 
6.8% were BRCA-biallelic for the HRD-RNA model. 
Additionally, 10.9 and 11.5% of ovarian cancers were 
annotated as BRCA-biallelic for the HRD-DNA and 
HRD-RNA model cohorts, respectively (Fig. 1A). These 
prevalences are slightly lower than what has previ-
ously been observed for the frequency of a somatic or 
germline mutation in breast (7.8%) and ovarian (20%) 
cancers [55, 56]. This discrepancy is likely attributable 
to our requirement for biallelic BRCA alterations and 
to cohort differences found in the Tempus Oncology 
Database [56, 57]. Our observed prevalence of BRCA​
-deficiency in prostate and pancreatic cancers is 6.5 and 
2.4%, which is similar to the values reported by others: 
6.2 and 3.4% respectively [58, 59].

For the approximately 75% of samples that were desig-
nated as HRD-ambiguous, the majority of samples were 
excluded from the HRR-WT class due to monoallelic 
LOH in either BRCA1/2 or an HRR gene (Supplemental 
Fig.  1). Samples with LOH were included in the HRD-
ambiguous class given the potential for co-occurring 
alternative mechanisms of BRCA-deficiency (i.e., pro-
moter methylation, a low VAF, or a VUS), limiting the 
ability to apply a high-confidence HRD label.

Aneuploidy exclusion and gwLOH calculations 
for HRD‑DNA
The HRD-DNA model was designed to predict the 
HRD status of breast and ovarian tumor samples using 
gwLOH, excluding aneuploid chromosome arms. To 
detect aneuploidy and correct for this potential con-
founder, we determined the optimal probe loss fraction 
associated with chromosome arm deletion (and therefore 
excluded from the gwLOH calculation) and the optimal 
gwLOH threshold to distinguish BRCA-biallelic (HRD+) 
samples from HRR-WT (HRD-) samples for both breast 
and ovarian cancers (Supplemental Fig.  2A). We found 
that model performance, measured by F1-score (the har-
monic mean of precision and recall), was more sensitive 
to the gwLOH threshold than probe loss threshold, and 
optimal probe loss thresholds were 78 and 84% for breast 
cancer and ovarian cancer, respectively. For biologi-
cal consistency, and given the breast cohort is approxi-
mately twice as large as the ovarian cohort, a probe loss 
threshold of 80% was selected to identify chromosome 
arms lost due to aneuploidy for both cohorts. The cho-
sen probe loss threshold was validated by applying it to 
glioma samples that received fluorescence in situ hybridi-
zation (FISH) to assess genetic deletion of chromosome 
1p (Supplemental Fig.  2B), which is often used to diag-
nose oligodendrogliomas [60–62]. Samples with nega-
tive 1p FISH results had a significantly lower fraction of 
probes lost compared to 1p FISH positive (p  < 2.2e-16) 
(Supplemental Fig.  2C). The chosen probe loss thresh-
old of 80% achieved 89% concordance with 1p FISH 
results, and samples with > 80% probe loss were signifi-
cantly enriched for 1p FISH positivity (Fisher’s exact test, 
p-value = 1e-31) (Supplemental Fig. 2D). Note that a lack 
of 100% concordance with FISH results is to be expected 
from our methodology given that FISH for 1p deletion 
usually relies on a single probe that covers only a fraction 
of the chromosome arm and can therefore result in false 
positives [63]. Together, these results demonstrate that 
the probe loss method accurately identifies chromosome 
arms lost due to aneuploidy.

Finally, the training samples were used to identify the 
optimal gwLOH score—excluding aneuploid chromo-
some arms—for calling a sample HRD+ or HRD-. The 
gwLOH threshold was determined as the threshold that 
best distinguished the BRCA-biallelic from HRR-WT 
samples, measured by F1-score. The optimal gwLOH 
threshold was 21 and 17% for breast and ovarian cancer, 
respectively (Fig. 2A). The evaluation set of samples were 
then used to evaluate the performance of the chosen 
probe loss and gwLOH thresholds, yielding robust perfor-
mance metrics: sensitivity (breast = 1, ovarian = 0.921), 
specificity (breast = 0.963, ovarian = 1.0), positive predic-
tive value (PPV) (breast = 0.967, ovarian = 1.0), negative 
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predictive value (NPV) (breast = 1.0, ovarian = 0.857), 
F1-score (F1: breast = 0.983, ovarian = 0.959), and area 
under the receiver-operating characteristic curve (AUC) 
(breast = 1.0, ovarian = 0.993) (Fig.  2B). The HRD-DNA 
model had a lower sensitivity and NPV for ovarian can-
cer relative to breast cancer in the evaluation set, sug-
gesting there may be a greater fraction of patients with 
low gwLOH that are HRD+ in ovarian cancer (Fig. 2C). 
Finally, HRR-WT samples had significantly lower 
gwLOH compared to HRD-ambiguous samples in both 

HRR-mutated (Wilcoxon test; p-valuebreast  = 2e-14, 
p-valueovarian  = 4e-16) and BRCA1/2 monoallelic sam-
ples (Wilcoxon test; p-valuebreast  = 1e-10, p-valueovar-

ian = 4e-11). Samples were predicted HRD+ at a lower 
rate for HRR-WT samples (breast = 2.9%, ovarian = 0%) 
compared to HRR-mutated (breast = 56.7%, ovar-
ian = 69.3%) and BRCA1/2 monoallelic (breast = 48.8%, 
ovarian = 56.8%) — suggesting other potential drivers of 
the HRD-phenotype (Supplemental Fig. 3A). The gwLOH 
biomarker separated samples in the evaluation set with 

Fig. 2  The HRD-DNA model predicts HRD status from gwLOH. A Thresholds for calling a sample HRD+ for breast and ovarian cancer were set 
based on the maximum F1-score within samples in the training set. B Metrics used to assess HRD-DNA performance within the evaluation set. 
The confidence interval for breast cancer was [1, 1] and ovarian cancer AUC was [0.979, 1]. C Distribution of gwLOH scores across different HRR 
genotypes in the evaluation set. HRR mutated samples contain samples with either monoallelic or biallelic loss in a select number of HRR genes. 
Values in the box represent the median gwLOH percentage within each HRR genotype (**** p-value < 0.0001 for Wilcoxon test). Dotted lines are 
the thresholds chosen in (A) for each cancer type. Statistical differences between HRR-WT and BRCA biallelic loss were not shown, but all were 
significant (p-value < 0.0001 for Wilcoxon test)
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BRCA1/2 biallelic loss from samples with no evidence 
of mutations in BRCA1/2 or a subset of HRR genes with 
100% sensitivity and 96.3% specificity in breast and with 
92.1% sensitivity and 100% specificity in ovarian cancer 
(Fig. 2B).

HRD‑RNA model training and evaluation
While DNA-based approaches for detecting HRD have 
demonstrated utility in the clinic for ovarian cancer 
[20, 21] and are currently under investigation for breast 
cancer [16, 22–24], there is a need for a pan-cancer bio-
marker of HRD that can generalize to other tumor types. 
Here, we utilize RNA-sequencing data with a logistic 
regression model to identify a pan-tumor gene expression 
signature of HRD, here called the HRD-RNA model. The 
same sample labels that were assigned for the HRD-DNA 
model were also used for the HRD-RNA model, relying 
on biallelic loss of BRCA1/2 to define the HRD-positive 
class for model training. BRCA-biallelic and HRR-WT 
samples from all cancer types were included in the train-
ing and development sets for the HRD-RNA model, 
including breast and ovarian cancers (Fig. 1B). The HRD-
RNA model was evaluated for cancer types that included 
at least 3 BRCA-biallelic samples in the evaluation set 
(Fig. 3B). Across these cancer types, the model achieved a 
PPV of 25%, indicating that only a fraction of the patients 
predicted HRD+ exhibited BRCA1/2-deficiency. The 
highest AUCs on the evaluation set were in prostate 
(0.98) and pancreatic (0.98) cancer, which is unsurpris-
ing given that tumor pathogenesis in these cohorts has 
been previously associated with BRCA status [64, 65]. 
For prostate and pancreatic cancers in the evaluation and 
exploratory sets, there was strong separation between 
the BRCA-biallelic and HRR-WT samples (Wilcoxon 
test; p-valueProstate  = 1e-14, p-valuePancreatic  = 6e-11), 
and between the HRR-WT and HRD-ambiguous sam-
ples (Wilcoxon test; p-valueProstate  = 4e-9, p-valuePancre-

atic = 6e-8) (Fig. 3C).
While other cancer cohorts — biliary, colorectal, non-

small cell lung cancer, sarcoma, and cancers of unknown 
primary (tumors of unknown origin) — had a lower 
prevalence of BRCA1/2 alterations, previous work has 
suggested that these cohorts may exhibit the HRD phe-
notype and respond to PARP inhibitors (Fig. 1B) [66–68]. 
We hypothesized that tumors from patients with these 
cancer types may exhibit the HRD phenotype in the 
absence of BRCA loss. For these cohorts, we observed 
lower overall performance relative to BRCA status when 
compared to pancreatic and prostate cancer (Fig. 3B).

Across all cohorts evaluated using the HRD-RNA 
model, the number of samples with BRCA-biallelic loss 
in the training and development sets was positively cor-
related with the F1-score (R = 0.92, p-value = 3e-3) and 

sensitivity (R = 0.95, p-value = 1e-3) of the model on the 
evaluation set (Supplemental Fig. 4). This result suggests 
a biological and/or modeling constraint in cancer cohorts 
with few BRCA-biallelic samples — either BRCA defi-
ciency may be a poor surrogate for HRD status or there 
may be insufficient BRCA-biallelic samples to identify 
a signal. The high fraction of samples that were HRD-
ambiguous and predicted HRD+, i.e. 13.1% of BRCA-
monoallelic and 11.7% of HRR-mutated prostate cancers, 
suggests that mutations in other HRR pathway genes or 
epigenetic modifications (i.e., hypermethylation) may 
drive the HRD-phenotype in cancer types not tradition-
ally associated with BRCA-status (Supplemental Fig.  3; 
Fig. 3C).

The HRD‑DNA and HRD‑RNA models capture an underlying 
HRD‑phenotype consistent with the literature
Both the HRD-DNA model and the HRD-RNA model 
captured biallelic loss of BRCA1/2 with high sensitivity 
and specificity in BRCA-associated tumors (breast, ovar-
ian, pancreatic, and prostate cancer) (Fig.  2B; Fig.  3B). 
We hypothesized that some fraction of the ~ 75% of sam-
ples annotated as HRD-ambiguous would be predicted 
HRD+ (Fig. 1; Supplemental Fig. 1); these HRD-ambig-
uous samples had higher HRD scores (Fig.  2C, Fig.  3C) 
and a higher frequency of HRD+ predictions compared 
to HRR-WT samples (Supplemental Fig.  3) by both the 
HRD-DNA and HRD-RNA models. Together, these find-
ings further suggest that there is an underlying HRD-
phenotype not captured by BRCA biallelic loss alone.

Outside BRCA1/2 alterations, samples predicted 
HRD+ by each HRD model were enriched for biallelic 
loss of HRR-related genes, which would suggest an alter-
native mechanism for the HRD-phenotype (Fig.  4A). 
Here, we defined HRR-related genes more broadly to 
include: ATM, ATR​, ATRX, BARD1, BRIP1, CDK12, 
CHEK2, FANCA, HDAC2, MRE11, NBN, PALB2, 
RAD51C, RAD51B, RAD51D, and RAD54L. Significant 
enrichment of HRD-DNA+ predictions was observed in 
samples with biallelic loss in BRIP1 (False-discovery rate 
corrected p-value [FDR] = 4.8e-7), CDK12 (FDR = 3.1e-
5), and RAD51D (FDR = 2.7e-4). Previous studies have 
also demonstrated that biallelic loss in BRIP1 or RAD51D 
is associated with a higher gwLOH score in BRCA-asso-
ciated cancers [9]. In other cancer types, there was a 
lower overall fraction of samples predicted HRD+ across 
these HRR genes, highlighting the overall lower fre-
quency of HRD in these cancer types (Fig. 4A). However, 
there was significant enrichment for HRD-RNA+ predic-
tions in samples with biallelic loss of ATRX (FDR = 9e-8), 
CDK12 (FDR = 4e-5), FANCA (FDR = 2e-2), PALB2 
(FDR = 3e-8), and RAD51B (FDR = 5e-4). Enrichment of 
HRD+ calls in samples with biallelic loss of HRR genes 
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highlights the utility of both the HRD-DNA and HRD-
RNA models in identifying a number of potential drivers 
of the HRD phenotype that are independent of BRCA​1/2 
biallelic loss.

The HRD-RNA model, in contrast to the HRD-DNA 
model, has the potential to capture a dynamic HRD 

phenotype. For example, one mechanism for PARP inhib-
itor resistance is via a BRCA1/2 reversion mutation [69–
71]. Though rare, samples with these mutations can serve 
as a test of the dynamic nature of the HRD-RNA model 
compared to the HRD-DNA model. In the presented 
data, breast cancer samples most frequently possessed 

Fig. 3  The HRD-RNA model determines HRD-status for cancer cohorts outside breast and ovarian cancer using a logistic regression model 
trained on RNA-seq data. A The threshold for calling a sample HRD+ was set as the raw RNA score that had the maximum F1 score on the training 
and development samples. For final reporting, the raw score was transformed to the final HRD-RNA, where a score of 50 represents the chosen 
threshold (Methods). B Metrics used to assess HRD-RNA model performance across cancer cohorts for samples within the evaluation set. C 
Distribution of HRD-RNA scores across different HRR genotypes in the evaluation set for cancer indications with > 3 BRCA-deficient samples in the 
evaluation set. Dotted line represents the threshold chosen in (A). Values in the box represent the median HRD-RNA score. Differences determined 
by Wilcoxon test (* p-value < 0.05, **** p-value < 0.0001). Statistical differences between HRR-WT and BRCA biallelic loss were not shown. Statistical 
differences between HRR-WT and BRCA biallelic loss were not shown, but all were significant (p-value < 0.0001 for Wilcoxon test). AUC: Area Under 
the Curve. NPV: Negative Predictive Value
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BRCA reversion mutations (n  = 7); these cases were 
excluded from the HRD-RNA model training and devel-
opment sets. The HRD-RNA model predicted lower HRD 
scores for samples with a BRCA1/2 reversion mutation 

compared to samples with biallelic loss of BRCA1/2 (Wil-
coxon test; p-value = 0.002), indicating the ability of the 
HRD-RNA model to capture a dynamic HRD phenotype 
(Fig.  4B). On the other hand, there was no significant 

Fig. 4  The HRD-DNA and HRD-RNA models are enriched for a HRD-phenotype and are concordant with published HRD+ rates. A Enrichment for 
HRD+ calls in samples with biallelic loss of HRR genes for breast cancer and ovarian cancer (HRD-DNA), and other cancers (HRD-RNA). Enrichment 
was calculated using a Fisher’s exact test comparing samples from the HRD-ambiguous and HR-WT samples that has biallelic loss of specific HRR 
gene versus all other samples. Significance was determined as p-value < 0.05. B Distribution of GWLOH percentage (top) and HRD-RNA scores 
(bottom) of breast cancer samples with BRCA1/2 reversion mutations. Significance shown for two-sided Wilcoxon-test. C Predicted rates of HRD+ 
samples across cancer types compared to published rates (CHORD), stratified by primary and metastatic samples. For breast and ovarian cancer, the 
HRD-DNA model was used to determine rates of HRD+ samples. For all other cancer cohorts, the HRD-RNA model was used
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difference in the HRD-DNA score between samples with 
a BRCA1/2 reversion mutation and BRCA-biallelic sam-
ples. Although five out of the seven samples with BRCA 
reversions were predicted to be HRD+ by HRD-RNA, 
this may be attributable to clonal BRCA reversion (mean 
VAF: 13.3%), resulting in clonal HRD.

Finally, given the different approaches for predicting 
HRD status (HRD-DNA and HRD-RNA) and the low 
PPV for non-BRCA associated cancer cohorts, we com-
pared rates of HRD+ calls between the presented mod-
els and the literature (Fig.  3B, Fig.  4B). The Classifier 
of HOmologous Recombination Deficiency (CHORD) 
method utilizes genomic features from whole-genome 
sequencing data with a random forest classifier to deter-
mine HRD-status [8]. HRD prevalence across tumor types 
estimated by CHORD was used as a benchmark for posi-
tivity rates predicted by HRD-DNA (breast and ovarian) 
and HRD-RNA (all other cohorts), stratified by primary 
and metastatic status. For both primary and metastatic 
cancers, there was a strong, positive correlation (HRD-
DNA: R2  = 0.63, p-value = 4e-4; HRD-RNA: R2  = 0.83, 
p-value = 1e-7) between the predicted frequency of 
HRD+ samples in the presented models and the respec-
tive predicted frequency in CHORD (Fig.  4C; Supple-
mental Fig. 5). This suggests predicted HRD+ prevalence 
within each cancer type is supported by other studies.

There were a few notable deviations in predicted HRD 
prevalence across tumor types. First, the HRD-DNA 
model reported an HRD+ prevalence of 52 and 61% in 
primary breast and ovarian cancer, while CHORD pre-
sented 54 and 30%, respectively. This difference may be 
due to the fact that patients sequenced by Tempus are 
often later-stage and have received more lines of therapy. 
Moreover, other groups have reported ovarian cancer 
HRD+ prevalence in the 40–50% range [72, 73]. In meta-
static breast cancer, CHORD reported an HRD+ preva-
lence of 12%, while the HRD-DNA model predicted 46%. 
Upon further inspection of the cohort used by CHORD, 
13.5% of all metastatic breast cancer samples were triple-
negative (TNBC), the breast subtype for which HRD 
positivity is highest [74]. By contrast, the Tempus cohort 
is enriched for TNBC samples given that these patients 
have few treatment options and worse outcomes, and are 
thus more likely to undergo Tempus NGS testing. Indeed, 
nearly 24% of Tempus breast cancers are TNBC, and, as a 
result, models predicting HRD status using Tempus data 

should be expected to report a higher HRD+ prevalence 
compared to CHORD.

HRD‑DNA and HRD‑RNA are robust to confounders
The limit of detection (LOD) for both the HRD-DNA and 
HRD-RNA models was determined by calculating the 
sensitivity of both models across different tumor purities. 
The LOD was set as the lowest tumor purity at which the 
PPV was greater than 70%. For the HRD-DNA model, 
PPV was calculated using all breast or ovarian samples 
that had either BRCA1/2 biallelic loss or were BRCA-
WT. A tumor purity threshold was set at 40% based on 
the PPV threshold (Supplemental Fig.  6). For the HRD-
RNA model, PPV was calculated using all samples, 
including breast and ovarian samples, that had either 
BRCA1/2 biallelic loss or were BRCA-WT and were in 
the evaluation set. A tumor purity threshold was set at 
30% based on the PPV threshold (Supplemental Fig.  6). 
These data indicate that the HRD-DNA and HRD-RNA 
models are performant among samples with at least 40 
and 30% tumor purity, respectively.

To test whether model performance is tissue-site 
dependent, the evaluation set was stratified by sample sta-
tus - primary, metastatic, lymph node, or unknown (Sup-
plemental Table 1). For both HRD-DNA and HRD-RNA, 
model performance was similar in each sample stratifica-
tion. For HRD-DNA, F1-score ranged from 0.933–1.0 
and sensitivity ranged from 0.875–1.0. For HRD-RNA, 
F1-score is higher in primary (0.741) compared to meta-
static (0.591) samples, mostly driven by higher sensitivity 
in primary samples (0.690) compared to metastatic (0.448) 
samples. However, AUC was similar between primary 
(0.956) and metastatic (0.953) samples, compensated for 
the higher specificity in metastatic (0.994) samples over 
primary (0.990) samples. Overall, HRD-DNA and HRD-
RNA performance is robust to biopsy site.

Finally, to establish reproducibility across sequencing 
runs, experiments were run to demonstrate inter- and 
intra-assay concordance for the HRD-DNA and HRD-
RNA models. To demonstrate intra-assay concordance 
for the HRD-DNA model, 32 samples were sequenced 
in triplicate in the same DNA sequencing run using the 
same reagent lot with different barcodes (Fig. 5A). There 
was a significant correlation for all run comparisons 
(0.87 < R  < 0.97 across all comparisons, p-value <1e-11), 
demonstrating intra-assay concordance. To demonstrate 
inter-assay concordance for HRD-DNA, 34 samples were 

(See figure on next page.)
Fig. 5  Inter- and intra-assay concordance for the HRD-DNA and HRD-RNA models. A Intra-assay concordance of HRD-DNA for 32 samples each run 
in triplicate. B Inter-assay concordance of HRD-DNA for 34 samples each run in triplicate. C Correlation between HRD-DNA and Omni 2.5 BeadChip 
array based genome-wide LOH. (D) Intra assay concordance of HRD-RNA for 6 samples each run in duplicate. E Inter assay concordance of HRD-RNA 
for 6 samples each run in duplicate. Dotted lines are identity lines
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Fig. 5  (See legend on previous page.)
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sequenced in triplicate on different days, using different 
instruments, different lab technicians, and at least two 
manufacturing reagent lots (Fig. 5B). There was a signifi-
cant correlation for all run comparisons (0.89 < R  < 0.98 
across all comparisons, p-value <1e-12), demonstrat-
ing high inter-assay concordance. To orthogonally vali-
date HRD-DNA gwLOH calls, 34 samples were run via 
Omni2.5 BeadChip copy number array at an external 
lab [75]. The HRD-DNA score was calculated from both 
sets of copy calls and was highly correlated (R  = 0.75, 
p-value = 3.9e-7; Fig. 5C).

To demonstrate intra-assay concordance for the HRD-
RNA model, 6 samples were sequenced in duplicate in 
the same RNA sequencing run using the same reagent 
lot with different barcodes (Fig.  5D). There was a sig-
nificant correlation of the raw RNA output (R  = 0.98, 
p-value = 4.4e-4), demonstrating intra-assay concord-
ance. To demonstrate inter-assay concordance for the 
HRD-RNA model, 6 samples were sequenced in dupli-
cate on different days, using different instruments, dif-
ferent lab technicians, and at least two manufacturing 
reagent lots (Fig. 5E). There was a highly significant cor-
relation of the raw RNA output (R = 0.99, p-value = 6.9e-
5), demonstrating inter-assay concordance.

Discussion
Here, we present two models, HRD-DNA and HRD-
RNA, that predict the HRD status of clinical FFPE sam-
ples. The models were trained and evaluated on their 
ability to predict BRCA1/2-biallelic from HRR-WT sam-
ples, relying on the canonical definition of HRD to define 
HRD-positive samples for training, rather than other 
genomic-scar based approaches. Samples that were pre-
dicted as HRD+ were also enriched for biallelic loss of 
other HRR genes and predicted frequencies of HRD+ 
samples across cancer cohorts are largely in agreement 
with what has been reported in the literature. The mod-
els’ ability to detect an HRD phenotype rather than solely 
BRCA-loss is critical outside of the so-called non-BRCA 
associated tumors (breast, ovarian, pancreatic and pros-
tate). Such HRD detection tools also present an opportu-
nity to identify alternative drivers of the HRD phenotype, 
and potential indications beyond those reported in the 
literature. HRD biomarkers based on genomic scarring 
have only thus far demonstrated clinical utility in ovar-
ian cancer [20, 21], while an RNA-based biomarker may 
be able to capture a gene expression signature that gen-
eralizes across tumor types. For example, we found high 
rates of HRD in sarcomas and mesotheliomas, highlight-
ing that RNA-based biomarkers may provide advantages 
for capturing a shared HRD phenotype in these histolo-
gies. Together, these models provide new biomarkers for 
HRD-status in solid tumor samples.

The basis for the HRD-DNA model, gwLOH, is known 
to have different manifestations across tumor types, 
necessitating cancer-specific thresholds for calling a 
sample HRD+. For breast and ovarian cancers, there 
were sufficient BRCA-biallelic samples to set a threshold 
for HRD-DNA to predict HRD-status. However, other 
cohorts either had too few BRCA​-biallelic samples or 
little difference in gwLOH between BRCA-biallelic and 
HRR-WT samples, necessitating an alternative approach. 
For solid tumor indications outside of breast and ovar-
ian, the HRD-RNA model predicts HRD-status using a 
logistic regression model trained on bulk RNA-seq data 
from solid tumor FFPE samples. Breast and ovarian can-
cer had the highest prevalence of BRCA-biallelic samples 
(Fig. 1); despite these being the dominant cancer cohorts 
for HRD+ samples, we assumed that the transcriptional 
signature of BRCA1/2 mutations and HRD would be con-
sistent across tumor types for predictive power of HRD 
independently of tumor type. The positive relationship 
between the number of BRCA-biallelic samples within 
a tumor type and the model F1-score highlights that 
model performance, as benchmarked by BRCA mutation 
status, is superior in cohorts with higher prevalence of 
BRCA alterations. Cancer types with lower prevalence of 
BRCA-biallelic samples and a low PPV suggest that bial-
lelic BRCA-loss may not be driving tumorigenesis. While 
p53 loss has been observed to confound gwLOH meas-
urements [9], there is little understanding of confound-
ing factors for RNA-based HRD approaches. Future 
work should focus on uncovering alternative causes of 
HRD, and disambiguating the differences in performance 
across cancer cohorts with the potential co-occurence of 
other tumor drivers where biallelic loss of BRCA may be 
a passenger rather than driver mutation.

The HRD-DNA and HRD-RNA models not only cap-
ture BRCA-biallelic samples but also demonstrate enrich-
ment for samples labeled as HRD-ambiguous (Fig.  2C, 
Fig. 3C) with biallelic loss of other HRR genes (Fig. 4A). 
While ATM was the most commonly lost HRR gene in 
ovarian, breast, and other cancers, and occurred at a 
rate similar to BRCA1/2- deficiency, HRD+ calls were 
enriched only in the HRD-DNA model, suggesting that 
ATM loss may be uniquely associated with a high gwLOH 
phenotype in breast and ovarian cancer but not HRD 
in other cancer types. In metastatic castration-resistant 
prostate cancer, clinical trials have shown little to no clin-
ical benefit of PARP inhibitors in ATM-mutated patients 
over standard of care treatment [5, 76]. Other muta-
tions were uniquely enriched in HRD+ predicted cases 
of breast and ovarian cancers (BARD1, BRIP1, MRE11, 
RAD51D) and cancer cohorts outside breast and ovarian 
cancer (RAD51B), suggesting additional unique drivers 
of HRD that may be cancer-cohort specific. Monoallelic 
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copy loss of HRR genes was highly prevalent and could 
not be included in the HRD-ambiguous category with-
out compromising the statistical power of the HRR-
WT cohort. Future work should explore the association 
between specific alterations (i.e., single nucleotide poly-
morphisms, LOH, deletions), pathogenicity (VUS), con-
texts (i.e., germline, somatic), and genes (i.e., BRCA1/2, 
HRR genes) with HRD calls to better understand mecha-
nisms driving the HRD+ predictions.

In both the HRD-DNA and HRD-RNA models, sam-
ples with biallelic loss of CDK12 were enriched for 
HRD+ predictions across tumor types. Mutations in 
CDK12 have been shown to confer sensitivity to PARP 
inhibitors in breast and ovarian cell lines [44] and clini-
cal trials in prostate cancer [5]. Further, the HRD-RNA 
model enriched for samples with biallelic loss of ATRX, 
PALB2, and RAD51B. PALB2 has been recognized to 
play a role in HRR through interactions with BRCA1/2 
[48] and, more recently, PALB2 has been implicated 
as another potential genomic biomarker for HRD [47, 
77, 78]. Biallelic loss of ATRX has been associated with 
increased gwLOH in breast but not ovarian or other 
cancer cohorts [9]. ATRX mutations have been shown 
to inhibit homologous recombination repair in cell 
lines [79–81], are linked to PARP inhibitor sensitivity 
in patient-derived xenografts [82], are associated with 
higher PARP1 expression in clinical glioblastoma tumors 
[83], and have shown sensitivity to DNA-damaging treat-
ment in pediatric high-grade glioma patients [84]. Over-
all, these pan-cancer models of HRD highlight the ability 
to accurately capture the HRD phenotype and thus gen-
erate new hypotheses for other potential genetic drivers 
of HRD.

Notably, the HRD-RNA model predicted samples with 
BRCA-reversions to have a significantly lower HRD-
RNA score than BRCA-biallelic samples, which was not 
true of HRD-DNA. This result suggests an RNA-based 
measure of HRD may capture dynamic changes in HRD 
phenotype upon tumor evolution. While the HRD-RNA 
score is significantly lower in this population, the major-
ity of samples would still be predicted HRD+ by the RNA 
model, highlighting the need for additional data to con-
firm these findings. Given that PARP inhibitor resistance 
can be caused by a number of mechanisms that cannot be 
detected by DNA alone [85], future work should explore 
the utility of RNA-based approaches for both identifying 
HRD samples and tracking the emergence of resistance.

Whole-genome sequencing (WGS) is challenging and 
expensive to implement in real-world clinical practice, 
but WGS-based models have emerged as a potentially 
comprehensive tool to capture HRD. Numerous meth-
ods based on mutational signatures from WGS have 
been published in the literature [8, 14]. While future 

work should explore comparing these methods to the 
presented HRD-DNA and HRD-RNA methods on a pub-
licly available dataset, such as TCGA, here we compare 
the prevalence of HRD on a cohort level between Tem-
pus and one such mutational signature on another data-
base. We demonstrated a strong correlation between the 
predicted frequency of one such WGS-based method, 
CHORD, and HRD+ frequencies from the presented 
models in both primary and metastatic samples. Devia-
tions (i.e., ovarian and breast cancer) can be partially 
explained by differences in HRD rates among different 
subtypes and enrichment of subtypes with higher rates 
of HRD+ samples in the Tempus Oncology Database. 
One notable deviation from the predicted rates of HRD+ 
samples is in pancreatic cancer where, for both meta-
static and primary samples, the predicted rates for HRD-
RNA are lower than CHORD. Reported rates of HRD in 
pancreatic cancer vary between 3 and 30% [19, 35], where 
RNA-based approaches have been shown to be prognos-
tic and identify other genetic drivers of HRD [35]. Given 
clinical trials have demonstrated no survival benefit using 
olaparib to treat pancreatic cancer patients with germline 
BRCA alterations, there remains a poor understanding of 
HRD manifestation in pancreatic cancer [86].

Significantly higher rates of HRD+ in mesothelioma 
(metastatic) and sarcoma (primary and metastatic) were 
seen with the presented models compared to CHORD. 
PARP inhibitors are currently being explored in combina-
tion with immune checkpoint inhibitors in mesothelioma 
[87], where improved response was observed in patients 
with germline mutations in HRR genes [88]. However, 
little work has been done exploring the role of HRD as 
a biomarker in sarcomas. A recent study demonstrated 
improved response to PARP inhibitors in patient-derived 
soft-tissue xenografts with high PARP1 expression [89]. 
Collectively, these observations suggest that HRD-RNA 
captures a unique but shared HRD signature across can-
cer types, which may help in clinical translation. Both 
mesothelioma and sarcoma present new cohorts to 
explore HRD as a potential biomarker, but more data is 
needed to determine the role of HRD and its value as a 
biomarker in these indications.

Conclusions
The HRD-DNA and HRD-RNA models developed and 
validated here accurately differentiate BRCA-biallelic 
from HRR-WT samples and enrich for other genomic 
events in the HRR pathway. Our findings suggest that 
while biallelic loss of BRCA1/2 may be sufficient to 
detect the majority of cases of the HRD-phenotype 
in breast and ovarian cancer, more work is needed to 
identify the relationship between genotype and HRD 
in other cohorts. The HRD-RNA model sheds light on 
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this relationship by determining a pan-cancer signature 
of HRD that can be applied to cancer cohorts across 
numerous and varied subtypes. This may be most valu-
able as a precision medicine tool in tumor indications 
with a lower frequency of biallelic BRCA loss. Further 
work is warranted to determine potential HRD driver 
events and clinical implications of HRD status across 
cancer indications. Importantly, future prospective 
clinical studies are required to assess the clinical util-
ity of the presented HRD biomarkers for predicting 
response to DNA-damage targeting therapies.
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